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Abstract

Folate-mediated one-carbon metabolism plays critical roles in DNA synthesis, repair, and DNA 

methylation. The impact of single nucleotide polymorphisms (SNPs) in folate-metabolizing 

enzymes has been investigated in risk of breast cancer among European or Asian populations, but 

not among women of African ancestry. We conducted a comprehensive analysis of SNPs in eleven 

genes involved in one-carbon metabolism and risk of breast cancer in 1,275 European-American 

(EA) and 1,299 African-American (AA) women who participated in the Women’s Circle of 

Health Study. Allele frequencies varied significantly between EA and AA populations. A number 

of these SNPs, specifically in genes including MTR, MTRR, SHMT1, TYMS, and SLC19A1, were 

associated with overall breast cancer risk, as well as risk by estrogen receptor (ER) status, in either 

EA or AA women. Associations appeared to be modified by dietary folate intake. Although 

single-SNP associations were not statistically significant after correcting for multiple comparisons, 

polygenetic score analyses revealed significant associations with breast cancer risk. Per unit 

increase of the risk score was associated with a modest 19% to 50% increase in risk of breast 

cancer overall, ER positive or ER negative cancer (all P<0.0005) in EAs or AAs. In summary, our 

data suggest that one-carbon metabolizing gene polymorphisms could play a role in breast cancer 

and that may differ between EA and AA women.
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Introduction

Breast cancer is the most common cancer and second leading cause of cancer death among 

U.S. women, accounting for approximately 29% of all new cancers and 14% of cancer 

deaths each year 1. Breast cancer incidence is higher in European American (EA) than 

African American (AA) women overall, yet AA women are more likely than EA women to 

be diagnosed with estrogen receptor (ER)-negative tumors, and to die from breast cancer 2-4. 

The sources of these racial differences in breast cancer remain largely unknown, despite the 

importance of identifying risk factors that may modify the risk of breast cancer and 

contribute to these racial differences.

One-carbon metabolism is a complex network of interdependent reactions that facilitate the 

transfer of one-carbon units and ultimately provide various forms of precursors needed for 

DNA methylation, nucleotide synthesis, DNA replication and repair 5 (Figure 1). Folate, a 

water-soluble B-vitamin found in leafy green vegetables and fruits, is the principle element 

of this metabolism pathway because inter-conversions of various forms of this nutrient are 

the foundation of one-carbon metabolism 6. Other nutrients, including methionine and other 

B-vitamins, also play roles in this pathway 7. Altered one-carbon metabolism due to 

deficiency of methyl-group nutrients and genetic polymorphisms of enzymes involved in the 

pathway can lead to aberrant DNA methylation patterns, disruption of DNA integrity and 

DNA repair, and increased DNA damage and gene mutations, and all of these mechanisms 

can ultimately contribute to genetic instability and can facilitate carcinogenesis 8. A number 

of epidemiological studies have suggested an inverse association between dietary folate 

intake and breast cancer risk, although findings have not been consistent across studies 9, 10. 

Various factors could contribute to these inconsistent findings, including differences in 

study design, study populations, dietary assessment, range and classification of folate. 

Inconsistencies may also be due, in part, to genetic variations in genes coding key enzymes 

involved in one-carbon metabolism.

Genetic variants in the folate-mediated one-carbon metabolism pathway may influence their 

function in one-carbon supply and subsequently result in aberrant methylation and 

disruption of DNA synthesis and repair, thereby modifying breast cancer risk. A number of 

studies have examined one-carbon metabolism gene polymorphisms for association with 

breast cancer risk; however, most studies have considered only a small number of genes and 

functional polymorphisms, including MTHFR (e.g., C677T: rs1801133, A1298C: 

rs1801131), MTR (A2756G: rs1805087), and MTRR (A66G: rs1801394), with mixed 

results 11-19. Furthermore, none of these studies has examined these polymorphisms in AA 

women. Thus it is possible that differences in genetic variants in the one-carbon metabolism 

pathway could contribute to differential risks of developing breast cancer between EA and 

AA women.
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In a large case-control study, we conducted a more comprehensive assessment of the one-

carbon metabolism pathway, examining associations between genetic variants of multiple 

genes in the pathway and breast cancer risk in EA and AA women. We further considered if 

associations varied according to ER status, or were modified by folate intake.

Materials and Methods

Study population

The Women’s Circle of Health Study (WCHS) is a case-control study designed to evaluate 

risk factors for early/aggressive breast cancer in AA and EA women; details of the study 

design, enrollment criteria, as well as collection of biospecimens and questionnaire data, 

have been previously described 20, 21. In brief, women with incident breast cancer were 

identified using hospital-based case ascertainment in targeted hospitals within four boroughs 

of the metropolitan New York City (NYC) area and by population-based rapid case 

ascertainment in seven counties in nearby New Jersey (NJ), through the NJ State Cancer 

Registry, a participant in the National Cancer Institute’s Surveillance, Epidemiology, and 

End Results (SEER) program. Eligible cases were English speaking women who self-

identified as AA or EA, 20-75 years of age, and were recently diagnosed with primary, 

histologically confirmed breast cancer, with no previous history of cancer other than non-

melanoma skin cancer. Controls were frequency matched to cases by self-reported race and 

5-year age groups and were recruited during the same time period as cases from the target 

population in the same residential area using random digit dialing supplemented by 

community recruitment efforts for AA women with the help of community partners and 

advocates 22. Overall, the participation rate for women who were contacted and eligible was 

82.4% and 52.5 % in AA cases and controls, respectively, and 79.1 and 49.0 % in Caucasian 

cases and controls, respectively. At the time of genotyping, data and samples from 1,275 EA 

(637 cases, 638 controls) and 1,299 AA (584 cases, 715 controls) participants were available 

from WCHS. Of these, 45 (22 EA and 23 AA) women were excluded due to missing dietary 

data, leaving 1,253 EA and 1,276 AA cases and controls in the gene-nutrient interaction 

analysis.

This study was approved by institutional review boards at Roswell Park Cancer Institute 

(RPCI), the Rutgers Cancer Institute of New Jersey (RCINJ), Mount Sinai School of 

Medicine (MSSM; now the Icahn School of Medicine at Mount Sinai), and participating 

hospitals in NYC. Signed informed consent was obtained from each participant prior to 

interview and biospecimen collection.

Data and sample collection

Detailed data on demographic characteristics, medical history, family history of cancer, and 

lifestyle factors, as well as anthropometric measures and biospecimens were collected by 

trained interviewers. Blood samples were initially collected for DNA extraction, but after 

enrollment of approximately 850 participants, saliva samples were collected using Oragene 

kits as a source of DNA. Pathology data including ER status, grade and stage, were collected 

and abstracted by trained study staff.
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Details of assessment of dietary intake have been described previously 23. Briefly, a Food 

Frequency Questionnaire (FFQ) was used to collect data on usual frequency of intake and 

portion size (small, medium, or large with reference to a specified medium portion size for 

each item) for approximately 125 food and beverages consumed during the 12 months prior 

to diagnosis for cases and to a comparable reference date for controls. The average daily 

intake of each nutrient, including folate intake, was computed by multiplying the standard 

serving frequency of each food or beverage item by its nutrient content of the specified 

standard portion size and then summing the nutrient intake for all foods and beverages.

Sample collection and processing

Genomic DNA from blood and saliva samples was extracted using the FlexiGene™ DNA 

isolation kits (Qiagen Inc., Valencia, CA) and Oragene™ kits (DNA Genotek Inc., Kanata, 

Ontario, Canada) following the manufacturer’s protocols. Genomic DNA was evaluated and 

quantitated by Nanodrop UV-spectrometer (Thermo Fisher Scientific Inc., Wilmington, DE) 

and PicoGreen-based fluorometric assay (Molecular Probes, Invitrogen Inc., Carlsbad, CA), 

and stored at −80°C until analysis.

SNP selection and genotyping

We included in our analysis eleven key genes involved in folate transport or intracellular 

one-carbon metabolism (summarized in Figure 1) and then surveyed the Human Genome 

Epidemiology (HuGE) Navigator to identify single nucleotide polymorphisms (SNPs) 

within each of these candidate genes 24. We then selected eighty-eight SNPs that were 

previously associated with cancer risk or outcomes, with a focus on those associated with 

known or putative functional changes. Selected SNPs were genotyped among cases and 

controls at the Genomics Core Facility at Roswell Park Cancer Institute using the Illumina 

GoldenGate assay (Illumina Inc., San Diego, CA). As a quality control measure, five percent 

duplicates and two sets of in-house trio samples were included across all plates. The 

concordance among blind duplicate pairs was greater than 99.9%. After excluding SNPs 

with a call rate less than 90%, in violation of Hardy-Weinberg equilibrium, or with a minor 

allele frequency (MAF) less than 5% for both AAs and EAs, seventy-four SNPs remained 

for the eleven one-carbon metabolism genes and were included in this analysis 

(Supplementary Table S1). To account for population admixture in the analysis, all samples 

were also genotyped for a panel of 100 ancestry informative markers (AIMs) that were 

previously validated in the Black Women’s Health Study 25. Proportions of European 

Ancestry and African Ancestry of individual EA and AA women were computed 

quantitatively using the Bayesian Markov Chain Monte Carlo clustering algorithm 

implemented in STRUCTURE 26, based on data from the 100 genotyped AIMs.

Statistical analysis

Descriptive variables were compared between cases and controls using chi-square tests for 

categorical variables and t-tests for continuous variables. Multivariable unconditional 

logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals 

(CIs) for the risk of breast cancer associated with genotype, with adjustments for age at 

diagnosis, family history of breast cancer, body mass index, education, history of benign 

breast disease, menopausal status, and proportion of European ancestry. Other covariates 
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including alcohol intake did not significantly affect the risk estimates and thus were not 

included in the multivariable-adjusted analysis. All analyses were performed separately for 

EA and AA women. Participants with the most common homozygous genotype among EA 

controls were treated as the referent group. Genotypic (co-dominant) models were assumed 

for SNP effects. Based on the risk estimates, heterozygotes were combined with either 

homozygous rare or homozygous common genotypes to explore dominant and recessive 

models, respectively. When the number of the rare homozygote was small (i.e., <10) in both 

populations, ORs and 95% CIs were reported for the dominant model only (heterozygous 

and rare homozygous genotypes combined) for power considerations. Additive genotype 

coding based on the number of rare alleles (i.e., 0, 1, 2) was analyzed as an ordinal variable 

in tests for linear trend. Analyses also were conducted to examine associations stratified by 

ER status. Interactions by self-reported race (AA and EA) or dietary folate intake (low and 

high-intake based on the median intake among controls) were also tested by including an 

interaction term (SNP*self-reported race or SNP*dietary folate) in multivariable logistic 

models and performing the likelihood ratio test.

In addition to single SNP analysis, we also performed multi-marker analyses by using a 

weighted polygenetic risk score as described by Speliotes and colleagues 27. The multi-

marker risk score was calculated as the sum of the number of risk genotypes (dominant and 

recessive models) and risk alleles (additive model) of the final model chosen for each 

significant SNP, and weighted by the regression coefficients from the logistic regression 

model. The final genetic score was then standardized by dividing the sum of regression 

coefficients and multiplying the expected number of risk genotypes/alleles; therefore, each 

unit of the composite genetic score is equal to one risk genotype or allele. The score was 

analyzed as a continuous variable in the logistic regression model with adjustment for the 

same set of covariates as described above. For SNPs associated with a decreased risk, the 

reference and comparison groups were selected such that the genotypes or alleles of interest 

were associated with an increased risk. For SNPs located within 500kb on the same 

chromosome and in high linkage disequilibrium (LD; r2≥0.8), only the SNP with the 

strongest association was included in the computation of the polygenetic score.

All analyses were conducted using SAS V9.3 (SAS Institute, Cary, CA) or PLINK program 

V1.07. LD was determined by calculating r2 values between each SNP pair using the 

program Haploview V4.2. Statistical tests were two-sided and considered significant for 

uncorrected P≤0.05. All significant P-values were further adjusted for multiple comparisons 

using Bonferroni correction.

Results

Participant Characteristics

Characteristics of the study population are shown separately for EA and AA women in 

Table 1. Overall, AA women tend to have a higher BMI and to be less well-educated than 

EA women. Compared to EA controls, EA cases were more likely to have a family history 

of breast cancer, to have a history of benign breast disease, and to be less well educated. AA 

cases were more likely than AA controls to have a history of benign breast disease. Data on 

ER status were available for 71.9% of EA cases and 75.9% of AA cases. As expected, AA 
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cases were more likely than EA cases to be diagnosed with ER negative breast cancer 

(31.6% versus 17.5%).

Differences in allele frequencies of SNPs between EA and AA women

SNPs and MAF of the 74 SNPs among EA and AA controls are shown in Supplementary 

Table S1. For 39 of the 74 SNPs, allele frequencies differed significantly between EA and 

AA controls (P<0.05), and for 12 of these SNPs, the rare allele variant was reversed 

between the two groups.

Associations of SNPs with breast cancer risk in EA and AA women

Associations between each SNP and overall breast cancer risk in EA and AA women are 

shown separately in Supplementary Table S2, and ORs (95% CIs) for SNPs with significant 

associations (P<0.05) are shown in Table 2. Among EA women, three SNPs were associated 

with breast cancer. MTR-rs1805087 was associated with decreased risk (OR= 0.44, 95% CI: 

0.24-0.80) in a recessive model. MTR-rs2275565 was in LD (r2=0.86) with MTR-rs1805087 

and associated with similar decreased risk (Table S2). An increased risk also was observed 

for MTRR-rs10520873 (OR=1.37, 95% CI: 1.08-1.73) and TYMS-rs2612100 (OR=1.63, 

95% CI: 1.12-2.37) in dominant and recessive models, respectively. Among AA women, 

four SNPs were associated with increased risk, including SHMT1 (rs2168781, rs4925180), 

TYMS-rs2853533, and SLC19A1-rs3788189, with ORs ranging from 1.29 (95% CI: 

1.02-1.63) to 1.49 (95% CI: 1.06-2.10) in dominant models. These genotype associations 

with breast cancer risk differed in strength between AA and EA women, but the SNP by race 

interaction was statistically significant only for TYMS-rs2612100 in the recessive model (p-

interaction=0.03), with a significant increased risk associated with AA genotype among EA 

women (OR=1.63, 95% CI: 1.12-2.37), but not in AA women (OR=1.01, 95% CI: 

0.80-1.26). Although there was no association between MTHFR-rs1801133 (C677T) and 

overall breast cancer risk in either EAs or AAs, in a post-hoc analysis, we found a 

significant increased risk among premenopausal AA women (OR=1.59, 95% CI: 1.07-2.36) 

(data not shown). Further, none of above associations remained significant after correction 

for multiple comparisons.

Associations stratified by ER status

Associations between each SNP and risk of ER positive and ER negative breast cancer were 

examined separately (Supplemental Table S3). Although the majority of associations were 

similar by ER status, some did differ in stratified analyses (Table 3).

Among EAs, BHMT-rs7700970 and DHFR-rs1643658 were both inversely associated with 

ER positive breast cancer (OR=0.61, 95% CI: 0.37-0.98 and OR=0.76, 95% CI: 0.57-0.99, 

respectively) in recessive and dominant models, respectively. MTHFR-rs2274976 was 

positively associated with ER negative breast cancer (OR=2.33, 95% CI: 1.07-5.08), 

whereas BHMT-rs567754 was inversely associated (OR=0.60, 95% CI, 0.37-0.98). MTRR-

rs10520873 was associated with increased risk of both ER positive (OR=1.38, 95% CI: 

1.05-1.82) and negative breast cancers (OR=1.69, 95% CI: 1.04-2.76).
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Among AAs, seven SNPs were associated with ER positive breast cancer (Table 3). Of 

these, four SNPs, including MTR-rs2275565, SHMT1-rs2168781, TYMS-rs2853533, and 

SLC19A1-rs3788189, were associated with overall breast cancer risk in AAs, with 

relationships strongest with risk of ER positive cancer, with ORs ranging from 1.46 (95% 

CI: 1.08-1.96) to 1.87 (95% CI, 1.19-2.95). MTR-rs6668344 and MTHFD1-rs2236225, 

while not associated with overall breast cancer risk in AAs, did appear to be associated with 

decreased risk of ER positive disease (OR=0.76, 95% CI: 0.57-1.01 and OR=0.75, 95% CI: 

0.56-1.00, respectively). We found no SNPs associated with ER negative breast cancer in 

AA women.

Associations with polygenetic risk score

The SNPs with designated risk alleles or genotypes, expected range of the polygenetic score, 

mean and standard deviation of the score in cases and controls, and risk estimates associated 

with per unit of the score are shown in Table 4. In each subgroup, breast cancer cases had 

higher polygenetic risk score than controls, and per unit increment of the score (refer to one 

risk allele or genotype) was associated with significantly increased risk. Each one-unit 

increase of the polygenetic score was associated with an 18% −50% increased risk for breast 

cancer overall, by ER status in EAs, or in ER positive disease in AAs.

Effect modifications by dietary folate

We examined interactions between each SNP and one-carbon nutrients, specifically folate 

intake from natural food sources that was previously found to be inversely associated with 

breast cancer in this study population 23. Associations of several SNPs with risk of breast 

cancer differed by level of folate intake (low- and high-intake by median) in EAs or AAs (P-

interaction <0.05, Table 5).

Among EAs, variants for MTR-rs6668344 and MTRR-rs1801394 were associated with 

increased risk among women with high folate intake (p-interaction=0.06 and 0.03, 

respectively). A reduced risk associated with GG genotype of SCL19A1-rs3788189 was also 

observed among women with high-intake (p-interaction=0.01), with similar patterns found 

for the other four SLC19A1 SNPs that were in LD with rs3788189 (data not shown). Among 

AAs, a significant interaction was observed for MTHFR-rs7533315, with TT genotype 

associated with increased risk in women with low-intake, but a non-significant reduced risk 

in women with high-intake (p-interaction=0.004). We also examined interactions between 

the polygenetic risk score and intake of other one-carbon nutrients such as vitamin B2, B6, 

B12 and methionine with overall cancer risk in EAs and AAs separately, and found no 

significant interactions (data not shown).

Discussion

In this case-control study, we conducted an analysis of a panel of genetic variants in eleven 

genes involved in folate-mediated one-carbon metabolism and risk of breast cancer in 1,275 

EA and 1,299 AA women. Allele frequencies of SNPs in these genes varied significantly 

between EA and AA control populations. A number of these SNPs, especially in genes such 

as MTR, MTRR, SHMT1, TYMS, and SLC19A1, were found to be associated with overall 
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breast cancer risk, as well as breast cancer risk by ER status, in either EA or AA women. 

Our results also indicate that SNP associations may be modified by level of dietary folate 

intake. Although the single-SNP associations were not statistically significant after 

adjustment for multiple comparisons, the polygenetic risk score analyses which allowed us 

to examine the combined effect of all significant SNPs observed in each subgroup, revealed 

significant associations with breast cancer risk. To our knowledge, this is the first study to 

examine associations of one-carbon metabolism genes with breast cancer in both EA and 

AA populations, specifically with a large sample of AA women.

MTHFR is the most studied enzyme in one-carbon metabolism. As illustrated in Figure 1, it 

catalyzes the irreversible reduction of 5, 10-methylene-THF, a common substrate to both 

nucleotide synthesis and methylation reactions, to 5-methylene-THF, which is the primary 

circulating form of folate and provides methyl groups for reactions leading to DNA 

methylation 8. The two non-synonymous polymorphisms in MTHFR, rs1801133 (C677T) 

and rs1801131 (A1298C), have been the most extensively studied SNPs because their 

variant alleles have been linked to reduced MTHFR activity 28, 29. Results from studies 

exploring associations between these MTHFR variants and breast cancer risk have been 

inconsistent, with meta-analyses failing to support an overall association, although some 

studies suggested an increased risk associated with MTHFR 677TT genotype in 

premenopausal women 9, 30, 31. Consistent with the literature, neither of the two SNPs was 

associated with breast cancer overall in EAs or AAs in our study, but a significant increased 

risk was observed among premenopausal AA women who carry the 677T allele. Thus, 

reduced MTHFR activity of the 677T allele could result in altered (less) availability of 

methyl groups and impaired DNA methylation, and subsequently lead to cancer 

development. We found no associations for other MTHFR polymorphisms except for the 

rs2274976 (1793G>A) polymorphism, which was associated with an increased risk for ER 

negative breast cancer in EA women. This SNP was not associated with breast cancer in one 

study 32, but has been linked to increased risk of nonsyndromic cleft lip and endometrial 

cancer33, 34.

Several SNPs in MTR were associated with breast cancer risk overall and selectively with 

risks for specific breast cancer subtypes (ER status) in EA and/or AAs. MTR catalyzes the 

remethylation of homocysteine to methionine with simultaneous demethylation of 5-methyl-

THF to THF, thus is essential for maintaining adequate intracellular methionine for 

methylation reactions, and for the provision of THF for further use in nucleotide synthesis. 

We found that MTR-rs1805087, also known as A2756G or D919G, was associated with 

decreased risk of breast cancer among EA women carrying homozygous variant GG 

genotype, which is consistent with a recent meta-analysis indicating that the variant G allele 

is associated with reduced risk of breast cancer in European populations 35. The A2756G 

polymorphism occurs in the activation domain of MTR, and the variant GG genotype has 

been shown to be associated with lower homocysteine and higher serum folate 

concentrations 36, 37, suggesting that the GG genotype might increase enzyme activity. We 

also observed associations for ER positive breast cancer with two other MTR SNPs 

(rs6668344 and rs2275565) in AA women. The significance of these observations should be 

explored in future studies. MTRR has a crucial role to maintain the activity of MTR. We 

Gong et al. Page 8

Int J Cancer. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed an increased risk associated with MTRR-rs10520873 among EA women. This SNP 

is located at 3′UTR of MTRR gene, and has been significantly associated with increased risk 

of obesity in European adolescents 38. However, the biological function of this SNP remains 

unclear and needs to be determined in future studies. We did not observe an association for 

A66G (rs1801394), the most frequently studied MTRR polymorphism, which has been 

reported to affect plasma homocysteine concentrations 39. However, consistent with our 

results, previous studies that have examined this polymorphism in relation to breast cancer 

generally showed null results 40.

Our investigations of additional genes that have not been well studied in breast cancer led to 

some new findings. SHMT catalyzes the revisable conversion of serine to glycine and THF 

to 5, 10-methylene-THF, providing one carbon units for synthesis of methionine, 

thymidylate, and purines. We observed that two SNPs in the cytosolic form SHMT (SHMT1 

or cSHMT), rs2168781 and rs4925180, are associated with increased breast cancer risk 

overall and for ER positive cancer among AA women. The polymorphism, SHMT1-

rs1979277 (C1420T) has been described and found to be associated with lower red blood 

cell and plasma folate levels 41. However, we found no association with breast cancer for 

this polymorphism, which is consistent with findings from several previous studies 12, 42, 43. 

TYMS catalyzes the reductive methylation of dUMP to dTMP, thereby playing a central 

role in DNA synthesis and repair 44. We observed an increased risk associated with the AA 

genotype of TYMS-rs2612100 (G>A) among EA women. Another SNP, rs2853533, was 

associated with overall breast cancer risk and for ER positive cancer among AA women. 

These associations have not been observed in breast cancer, but a similar increased risk for 

colorectal cancer has been reported recently 45. In addition, although no association with 

overall risk was observed, several SNPs in BHMT, DHFR, and MTHFD1 were associated 

with ER positive or negative breast cancer in either EAs or AAs.

Data on gene expression profiling support that ER positive and ER negative tumors are 

fundamentally distinct diseases 46. There is evidence showing that genetic and 

environmental factors differ in breast cancer by ER status, suggesting different etiological 

pathways for ER positive and ER negative breast cancer 47. Our findings that associations 

between several genetic polymorphisms of one-carbon metabolizing genes and breast cancer 

risk differ by ER status provide some further evidence, although the mechanisms underlying 

these associations are largely unknown. Some data have suggested that methylation of CpG 

islands on the ER gene is associated with a lack of ER expression, and that DNA 

methylation patterns in breast cancer tumors significantly differ by ER status 48. In addition, 

although results have been inconsistent, associations between dietary folate intake level and 

breast cancer tend to differ by ER status 23. Thus, it is biologically plausible that these 

genetic variants are associated with either ER positive or ER negative breast cancer through 

their differential effect on DNA methylation and other unknown mechanisms. The sample 

size is relatively small, especially in ER negative tumors, thus findings could be due to a 

chance. Confirmation of these results and future research on the underlying mechanisms are 

needed.

A number of studies have examined interactions between one-carbon SNPs, specifically on 

MTHFR C677T, and folate in relation to breast cancer 49, with few studies observing 
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significant interactions. Previous findings have also been conflicting, with the 677T variant 

allele associated with increased 13, 50 or decreased risk 15among women with the lowest 

folate intake, and increased risk in women with high folate intake or plasma 

concentrations 19, 51. We did not observe interactions between MTHFR SNPs and dietary 

folate, but our results suggest that several SNP-breast cancer associations may differ by low- 

and high-folate intake, including SNPs in MTR, MTRR, MTHFR, and SLC19A1 in either 

EAs or AAs. Our findings could be due to chance because none of the interactions remained 

significant after correcting for multiple comparisons. Results from previous studies, as well 

as our data, indicate that both folate intake and one-carbon gene SNPs are associated with 

breast cancer risk, which suggests the importance of continued investigation of possible 

interactions.

An interesting observation from our study is that associations of certain SNPs in relation to 

breast cancer differed between EA and AA populations, i.e., significant associations in 

either EAs or AAs, but not in both. We found that MAF frequencies differed among 39 out 

of 74 SNPs between EA and AA controls, with rare allele variant reversed among 12 SNPs. 

For example, in addition to the SNPs discussed above, the minor alleles of SLC19A1 SNPs 

were reversed between EAs and AAs, and these SNPs were associated with breast cancer 

risk in AA women but not in EA women. SLC19A1, also known as the reduced folate carrier 

1 (RFC1), is responsible for transporting folate compounds into cells, thus functional change 

in the activity of SLC19A1 could modify folate metabolism through increasing or 

decreasing intracellular folate availability. Although these differences in association 

between EAs and AAs could be chance findings, our results may reflect differences in 

genomic structures for these genes between the two populations. Associations between 

genetic factors and risk for breast cancer have been reported to differ by race in the 

literature. For example, similar racial differences in other genetic pathways in relation to 

breast cancer risk were observed in our study population, and these results have been 

published recently 21, 52, 53. Furthermore, studies have showed that GWAS-identified SNPs 

in breast cancer from EA and Asian populations could not be replicated in AA women 54, 55. 

These differences in associations by race could be due to the different allele frequencies, LD 

structure, etiological heterogeneity in AA and EA populations, as well as differences in 

environmental exposures. In summary, our findings suggest that different SNPs and gene 

networks of the one-carbon metabolism pathway may be associated with breast cancer in 

AA versus EA women, and highlight the importance of conducting etiology studies of breast 

cancer across different race/ethnicity populations.

Several limitations of the study warrant consideration. First, although we investigated a 

large number of SNPs in multiple key genes thought to be important in cancer risk in one-

carbon metabolism pathway, other potentially functional genetic variants may not be 

included in the current study. Second, none of the associations for single SNP analysis 

remained significant after correcting for multiple comparisons, thus we cannot exclude the 

possibility of false positive findings. However, significant associations observed between 

polygenetic risk score and breast cancer risk suggest that one-carbon metabolism gene 

polymorphisms contribute to the risk of breast cancer. Finally, although this is a study with a 

large number of AA and EA women, which allow us to examine racial differences for these 
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genetic variants with breast cancer risk, our sample size was limited when analyses were 

stratified by race and ER status, and may have been inadequate to detect a small effect size 

or interactions.

In conclusion, this case-control study provides the most comprehensive investigation to date 

regarding the role of SNPs in one-carbon metabolism genes as risk factors for breast cancer 

overall and by ER status in both EA and AA populations. Our study provides some evidence 

that genetic variants in one-carbon metabolism and gene-nutrient interactions may 

contribute to risk of breast cancer in EA and AA women, with susceptible and protective 

loci differing by race. Additional large scale studies with different populations and 

functional evaluations are warranted to confirm these findings and explore the underlying 

molecular mechanisms.
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What’s new?

The impact of genetic variants in folate-metabolizing enzymes has been investigated in 

risk of breast cancer among European or Asian populations, but not among women of 

African ancestry. This is the first large study that specifically examined these 

associations in AA women and to involve a large number of both EA and AA cases and 

controls. Our results suggest that one-carbon metabolizing gene polymorphisms could 

play a role in breast cancer and that may differ between EA and AA women.
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Figure 1. 
Overview of folate-mediated one-carbon metabolism, with focus on enzymes investigated in 

this study. These enzymes include: BHMT, betaine-homocysteine methyltransferase; CBS, 

cystathionine-beta-synthase; DHFR, dihydrofolate reductase; FTHFD, 10-

formyltetrahydrofolate dehydrogenase; MTHFR, methylene tetrahydrofolate reductase; 

MTR, methionine synthase; MTRR, methionine synthase reductase; MTHFD1, methylene 

tetrahydrofolate dehydrogenase; SLC19A1, solute carrier family 19; SHMT1, serine 

hydroxymethyltransferase 1; TYMS, thymidylate synthetase; The substrates and products 

include: DHF, dihydrofolate; THF, tetrahydrofolate; SAM, S-adenosylmethionine; SAH, S-

adenosylhomocysteine; AMP, adenosine monophosphate; GMP, guanosine monophosphate; 

dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate.
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Table 1

Characteristics of 1,275 European American and 1,299 African American cases and controls in the Women’s 

Circle of Health Study (WCHS)
a

Characteristics European American African American

Cases
(n=637)

Controls
(n=638) P-value 

c Cases
(n=584)

Controls
(n=715) P-value 

c

Age (yr), mean (SD)
b 52.2 (10.0) 49.7 (8.7) <0.0001 51.7(10.4) 48.6 (9.5) <0.0001

Body mass index, mean (SD)
b 27.3 (6.6) 27.4 (7.1) 0.81 31.2 (6.7) 32.0 (7.9) 0.05

% European ancestry
b 97 (8) 98 (4) <0.0001 14 (16) 14 (14) 0.89

Menopausal status, n (%) 0.30 0.03

 Premenopausal 331 (52.0) 350 (54.9) 286 (49.0) 393 (55.0)

 Postmenopausal 306 (48.0) 288 (45.1) 298 (51.0) 322 (45.0)

Family history, n (%) 0.0004 0.13

 No 481 (75.5) 533 (83.5) 498 (85.3) 630 (88.1)

 Yes 156 (24.5) 105 (16.5) 86 (14.7) 85 (11.9)

Education, n (%) <0.0001 0.33

 <= high school 131 (20.6) 71 (11.1) 258 (44.2) 282 (39.4)

 Some college 140 (22.0) 113 (17.7) 159 (27.2) 201 (28.1)

 College graduate 198 (31.1) 208 (32.6) 102 (17.5) 139 (19.4)

 Post-graduate degree 168 (26.4) 246 (38.6) 65 (11.1) 93 (13.0)

History of benign breast disease, n (%) 0.0006 <0.0001

 No 368 (58.4) 431 (67.8) 399 (68.6) 564 (79.0)

 Yes 262 (41.6) 205 (32.2) 183 (31.4) 150 (21.0)

Estrogen receptor (ER) Status, n (%)
d <0.0001

 Positive 378 (82.5) 303 (68.4)

 Negative 80 (17.5) 140 (31.6)

a
Number may not add up to the total number due to missing values

b
SD: standard deviation.

c
P-value were from t-test for continuous variables and Chi-square test for categorical variables

d
ER status were available for 458 (71.9%) EA cases and 443 (75.9%) AA cases
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Table 5

Association between genetic polymorphisms in one-carbon metabolism genes and breast cancer risk stratified 

by dietary folate intake in European American (EA) and African American (AA) women, WCHS

Gene SNP Genoty
pe

Low-intake (≤232 ug/day High-intake (>232 ug/day)

P 
e

#
Ca/Co OR (95% CI)

a,b
P 

c,d # Ca/Co OR (95% CI)
a,b

P 
c,d

Overall EAs

MTR Rs6668344
f CC 117/106 1.00 0.49 105/150 1.00 0.02 0.02

CT 157/126 1.11 (0.76-1.63) 145/153 1.52 (1.06-2.17)

TT 46/49 0.76 (0.45-1.28) 46/40 1.61 (0.95-2.71)

CT/TT 203/175 1.01 (0.70-1.45) 0.96 191/193 1.54 (1.10-2.16) 0.01 0.06

MTRR Rs1801394 AA 87/64 1.00 0.82 71/101 1.00 0.20 0.29

AG 163/160 0.78 (0.51-1.20) 155/161 1.56 (1.05-2.33)

GG 70/57 1.08 (0.64-1.80) 70/81 1.34 (0.84-2.14)

AG/GG 233/217 0.86 (0.57-1.29) 0.46 225/242 1.49 (1.02-2.17) 0.04 0.03

SLC19A1 Rs3788189
g TT 84/90 1.00 0.28 91/106 1.00 0.09 0.04

TG 173/146 1.17 (0.79-1.73) 163/162 1.11 (0.76-1.61)

GG 64/44 1.32 (0.78-2.24) 44/75 0.60 (0.36-0.98)

GG vs.
TT/TG 257/236 1.20 (0.75-1.91) 0.45 254/268 0.56 (0.36-0.87) 0.009 0.01

Overall AAs

MTHFR Rs7533315 CC 130/170 1.00 0.17 124/146 1.00 0.24 0.07

CT 146/187 1.00 (0.72-1.38) 117/132 1.05 (0.73-1.51)

TT 34/23 1.83 (1.01-3.33) 18/38 0.58 (0.31-1.09)

TT vs.
CC/CT 276/357 1.83 (1.04-3.25) 0.04 241/278 0.57 (0.31-1.04) 0.06 0.004

a
OR, odds ratio; 95%CI, 95% confidence interval

b
Adjusted for age at diagnosis, education, body mass index, synthetic folate (folic acid) from fortified foods, family history of breast cancer, 

history of benign breast disease, menopausal status, and proportion of European ancestry.

c
P-trend for genetic dose response determined by coding genotypes as having 0, 1, or 2 variant allele, which was subsequently analyzed as an 

ordinal variable.

d
P for heterogeneity from dominant or recessive models.

e
P for interaction was for the differences in ORs between low- and high-folate intake.

f
A similar association pattern observed for MTR-rs3795708 (in LD with rs6668344)

g
Similar association patterns observed for other SLC19A1 SNPs that were found in LD with this SNP: rs2838956, rs2838958, rs4819128, rs12659
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